当前位置:首页  教学科研

学术讲座【Concentration of nodal solutions for nonlinear Schr?dinger equations】

时间:2017-12-26浏览:78设置

时间:2017年12月28日14:30-15:20

地点:旗山校区理工北楼601报告厅

主讲:美国犹他州立大学 王志强教授

主办:数学与信息学院、福建省分析数学及应用重点实验室、数学研究中心

专家简介:王志强,美国犹他州立大学终身教授,现受聘天津大学教授、中组部“千人计划”。在Morse理论应用于椭圆边值问题,椭圆问题的单峰解、多峰解、奇异变分问题、非线性Schrodinger方程和Schrodinger方程组等不失去紧性的变分问题的研究,取得了很多重要的研究成果,国际著名非线性分析和偏微分方程专家。 

报告摘要:We discuss the existence of localized sign-changing solutions for the semi-classical nonlinear Schr?dinger equation with the potential V assumed to be bounded and bounded away from zero. When V has a local minimum point P, as , we construct an infinite sequence of localized sign-changing solutions clustered at P and these solutions are of higher topological type in the sense that they are obtained from a minimax characterization of higher dimensional symmetric linking structure via the symmetric mountain pass theorem. Our method combines the Byeon and Wang’s penalization approach and minimax method via a variant of the classical symmetric mountain pass theorem, and is rather robust without using any non-degeneracy conditions. 


返回原图
/